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INTRODUCTION

POSTTRANSLATIONAL PROCESSING plays an essential role in
modifying activity and function of many proteins and has

been implicated in regulating diverse functions, including
tubulin assembly and disassembly (50), endocytosis (41), gene
transcription (10), cell signaling (1, 7), immune function and
antigen presentation (3), reproduction (47), and cell death (37,
52). Polyubiquitination is one modification that plays an essen-
tial role in termination of protein function and may act as a sig-
nal for protein degradation (51). Sequential addition of ubiqui-

tins to the �-amino group of a protein lysine involves a specific
ubiquitin ligase and targets a protein for degradation by the
26S proteasome (43). The 26S proteasome is composed of the
20S proteasome as its “core” catalytic unit capped on each end
by a 19S regulatory complex that confers ubiquitin specificity
and requirement for ATP (39). The 20S proteasome is a cylin-
drical structure containing four concentric rings, each contain-
ing seven subunits. The proteolytic center is located inside the
cylinder and has multiple protease activities (28).

Ubiquitin-dependent degradation of proteins has been im-
plicated in turnover of important regulatory proteins, such as
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ABSTRACT

This study examined the hypothesis that postischemic levels of oxidized and/or ubiquitinated proteins may be
predictive of functional recovery as they may be indicative of activity of the 20S and/or 26S proteasomes, re-
spectively. Subjecting isolated rat hearts to 15 min of ischemia had no effect on 20S- and 26S-proteasome ac-
tivities; however, both were significantly (p < 0.05) decreased by 70% and 54%, respectively, following 30 min
of ischemia and 60 min of reperfusion, changes associated with increased levels of protein carbonyls and ubiq-
uitinated proteins. Preischemic treatment of hearts with the proteasome inhibitor, MG132, resulted in dose-
dependent decreases (p < 0.05) in recovery of postischemic function [MG132 (µM), heart rate � pressure
product: 0, 11,158 ± 2,423; 6, 11,400 ± 3,009; 12, 5,513 ± 2,225; 25, 2,325 ± 992] and increased accumulation of
ubiquitinated proteins. Preconditioning with repetitive ischemia (IP) or preischemic treatment with nico-
randil (Nic) resulted in a significant increase in postischemic 20S-proteasome activity after 60 min of reper-
fusion (control, 95 ± 4; IP, 301 ± 65; Nic, 242 ± 61 fluorescence units). Only Nic had similar effects on 26S-pro-
teasome activity. These results support the conclusion that a correlation exists between eventual recovery of
postischemic function and levels of oxidized and/or ubiquitinated proteins, a phenomenon that may be depen-
dent on activity of the 20S and 26S proteasomes. Antioxid. Redox Signal. 7, 538–546.
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the cyclins and transcription factors (17, 18), plays an impor-
tant role in antigen presentation (3) and an essential role in
regulating several stress-responsive signaling pathways (4,
15), and maintains the balance between many cellular pro-
and anti-death pathways (11, 29). Ubiquitin-dependent pro-
tein degradation represents only one facet of proteasome-
mediated proteolysis. The 20S proteasome is capable of
removing misfolded or otherwise damaged proteins, without
the requirement for ubiquitin or energy (45, 46), and may act
as a secondary line of defense by removing oxidatively modi-
fied proteins in mammalian cells exposed to an oxidant stress
(12). Myocardial ischemia is associated with numerous post-
translational modifications of proteins, many of which can be
ascribed to oxidative phenomena. Indeed, we have demon-
strated carbonylation of actin isoforms in the ischemic heart
(35, 44), and examination of modifications of troponins and
other myofilament elements is an ongoing area of research
(49). One consequence of protein oxidation is increased vul-
nerability to proteolysis (14), and both actin and the tro-
ponins, and other myofilament elements, are lost following
ischemia (16), although the role of the proteasome has not
been examined.

Potential roles for the proteasomes in myocardial ischemia
can be postulated in which the 20S proteasome facilitates re-
covery by removal of damaged proteins, and the 26S prote-
asome regulates the balance between pro- and anti-death sig-
naling pathways. Interference with these processes might be
catastrophic and lead to cell death, an event possibly pre-
ceded by accumulation of oxidized and/or ubiquitinated pro-
teins. Yet the prospective roles of the proteasomes in cell
death or recovery during myocardial ischemia have not been
examined in any great detail. Most of the studies of prote-
asome in ischemic injury are in nervous tissue and demon-
strate inhibition of the 20S proteasome associated with accu-
mulation of oxidized and ubiquitinated proteins (2, 21, 22).
One study in the heart (5) has demonstrated oxidative modifi-
cation and inactivation of the 20S proteasome following 30
min of left anterior descending artery occlusion. To date, the
effect of ischemia on 26S-proteasome activity has not been
examined.

The current study examines the hypothesis that postisch-
emic levels of oxidized and/or ubiquitinated proteins may be
predictive of functional return as they may be indicative of
20S- and/or 26S-proteasome activities. We demonstrate in-
creases in postischemic protein oxidation and ubiquitination
associated with significant inhibition of the proteasomes. Fur-
ther, we show that additional inhibition of the proteasome is
associated with greater postischemic increases in ubiquiti-
nated proteins and decreased recovery of postischemic func-
tion, whereas myocardial preconditioning, which improves
postischemic function, partially preserves proteasome activity.

MATERIALS AND METHODS

Animals

Male Sprague–Dawley rats (225–275 g) were obtained
from Charles River Laboratory, Inc. (Wilmington, MA,
U.S.A.), Taconic Farms (Germantown, NY, U.S.A.), Harlan
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Laboratories (Jerusalem, Israel), or Hilltop Farms (Scotts-
dale, PA, U.S.A.), and allowed a 3-day in-house acclimatiza-
tion period and ad libitum access to food (Ralston Purina Co.,
St. Louis, MO, U.S.A.) and water prior to experimental use.
All protocols were approved by their respective Institutional
Animal Care and Utilization Committee and were in compli-
ance with the NIH Guide for the Care and Use of Laboratory
Animals (revised 1996).

Chemicals and reagents

All chemicals and reagents were obtained from reputable
sources. MG132 (Z-leu-leu-leucinal) was obtained from Pep-
tides International (Louisville, KY, U.S.A.). Nicorandil (Nic)
was kindly provided by Aventis Pharmaceuticals (Dublin, Ire-
land). Lactacystin was obtained from Biomol Research Labo-
ratories (Plymouth Meeting, PA, U.S.A.).

Perfused heart preparation

Rats were injected with sodium heparin (500 units, ip.) 30
min before being anesthetized with sodium pentobarbital (60
mg/kg, i.p.). Hearts were removed rapidly and then or-
thogradely perfused through the coronary arteries (25) as pre-
viously described (33) at a constant pressure of 95 cm H2O.
The perfusate was a modified Krebs–Henseleit (KH) buffer
consisting of the following (in mmol/L): NaCl 118, KCl 6.1,
CaCl2 2.5, MgSO4 1.2, NaHCO3 25, HEPES 1.0, and glucose
11.1. Complete buffer was prepared the day of the experiment
by mixing the proper amounts of concentrated stock solutions
to which was added the appropriate quantity of glucose and
CaCl2. All concentrated solutions, with the exception of
MgSO4, were tested for the presence of adventitious metals,
and treated with iminodiacetic acid chelating resin beads
(50–100 mesh; Chelex 100®; Bio-Rad, Hercules, CA, U.S.A.)
obtained from Sigma Chemical Co. (St. Louis, MO, U.S.A.)
if necessary, as previously described (32). When called for,
Nic (1 mmol/L) was dissolved in saline and perfused through
a side arm into the aortic cannula by a syringe pump (SE 400,
Becton Dickinson, Paris, France) at a rate adjusted to 1/20 of
heart coronary flow yielding a final concentration of 50
µmol/L. 

Assessment of hemodynamic function 
and exclusion criteria

Left ventricular systolic pressure development and end di-
astolic pressure were determined by way of a latex balloon
(0.1 ml) that was expanded to exert a physiologic end dias-
tolic pressure of 5 mm Hg as previously described (33). Heart
rate was calculated from the R to R interval of the electrocar-
diogram. Function was calculated as the rate � pressure
product, which is expressed as mm Hg � min. Coronary flow
was monitored and determined by timed collection of coro-
nary effluent (data not shown). Hearts were excluded from
the study if they failed to maintain a developed systolic pres-
sure of at least 70 mm Hg, or a heart rate of at least 220
beats/min during the 20-min pretreatment equilibration pe-
riod, or if a persistent arrhythmia was present during the equi-
libration period.
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Protocols

The basic protocol perfused hearts for a 20-min preisch-
emic equilibration period followed by 30 min of normother-
mic global ischemia and then 60 min of aerobic reperfusion.
In the proteasome inhibitor experiments, hearts were per-
fused with buffer containing up to 25 µmol/L MG132 during
the 20-min preischemic equilibration period only. During
reperfusion, hearts were perfused with KH buffer without the
inhibitor. When MG132 was added to the perfusate, it was
first dissolved in dimethyl sulfoxide. The final concentration
of dimethyl sulfoxide in the KH buffer (control and treatment
groups), when added, was 0.25%, which in preliminary ex-
periments had no effect on pre- or postischemic hemody-
namic function (data not shown). In the preconditioning ex-
periments, control hearts were perfused for 38 min with KH
preischemically, followed by 25 min of no-flow global isch-
emia at 37ºC (index ischemia), and then 60 min of reperfu-
sion with KH. Ischemic preconditioned (IP) hearts were
treated with two episodes of 3 min of global ischemia inter-
rupted by 2 min of reflow and followed by 10 min of KH per-
fusion prior to ischemia. Pharmacologically preconditioned
hearts were treated with 50 µmol/L Nic over 10 min followed
by 10 min of washout prior to the index ischemia. 

Proteasome activity

Proteasome activity was determined in cell lysate as de-
scribed by Grune et al. (13). In brief, cardiac tissue was ho-
mogenized in HEPES buffer containing (in mmol/L) NaCl
137, KCl 4.6, KH2PO4 1.1, MgSO4 0.6, EDTA 1, dithiothre-
itol 1, digitonin 0.01%, without protease inhibitors, at 4°C
and then centrifuged at 10,000 g to obtain the soluble frac-
tion. Cell supernatant (100 µg of protein) was incubated in 50
mmol/L Tris HCl buffer, pH 7.8, containing (in mmol/L) KCl
20, MgCl2 0.5, and dithiothreitol 1, for 1 h with the prote-
asome-specific peptide, suc-LLVY-MCA (75 µmol/L; Biomol
Research Labs, PA). Hydrolysis was stopped by addition of
ice-cold ethanol and dilution with 0.125 mol/L sodium bo-
rate, pH 9.0. Fluorescence products were monitored at 380
nm excitation and 440 nm emission. The reaction was carried
out in the absence and presence of the proteasome inhibitor,
lactacystin (5 µmol/L; Biomol Research Labs), to differenti-
ate between non–proteasome- and proteasome-mediated pep-
tide hydrolysis, and in the absence and presence of 5 mmol/L
ATP (with and without lactacystin) to differentiate between
the 20S and 26S proteasomes, respectively. For the most part,
results are expressed as percentage of control, necessary be-
cause storage of tissue samples, even at �80° C, can result in
interassay variation, particularly with respect to 26S-protea-
some activity. Care was taken to avoid freeze-thawing of tis-
sue samples more than once and to match experimental sam-
ples with preischemic controls that had been stored under the
same conditions and time intervals.

Immunoblot assays

Cardiac tissue was homogenized in HEPES buffer con-
taining (in mmol/L) NaCl 137, KCl 4.6, KH2PO4 1.1, MgSO4

0.6, EDTA 1, digitonin 0.01%, plus a cocktail of protease in-
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hibitors (leupeptin, 5 µg/ml; aprotinin, 5 µg/ml; pepstatin, 7
µg/ml; and phenylmethylsulfonyl fluoride, 40 µg/ml) at 4°C
and then centrifuged at 10,000 g to obtain the soluble frac-
tion. Cellular proteins (10–50 µg) were separated on 4–20%
Tris-HCl gels (Bio-Rad Laboratories) using standard sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (24) with
immunoblotting carried out using standard techniques and
developed with an enhanced chemiluminescence kit (Perkin-
Elmer Life Sciences, Boston MA, U.S.A.) or directly on the
membrane with the horseradish peroxidase system (Vecta-
stain®; Vector Laboratories, Inc., Burlingame, CA, U.S.A.)
using 3,3',5,5'-tetramethylbenzidine (TNB) as a substrate.
Membranes were probed with a polyclonal (rabbit) antibody
specific for ubiquitin (Sigma).

Protein oxidation

Cytosolic proteins were reacted with dinitrophenylhy-
drazine to tag carbonyl groups and then separated under re-
ducing conditions using standard polyacrylamide gel elec-
trophoresis (24). Protein carbonyls were then determined
using an immunoblot technique and antibody specific for
dinitrophenylhydrazine as previously described (44).

Statistical analysis

All results are expressed as means ± SEM. Statistical sig-
nificance of differences between sample populations with
equal variance was evaluated using one-way ANOVA fol-
lowed by the Tukey test for post-hoc analysis. Analysis of dif-
ferences between multiple groups was performed with a re-
peated measures of analysis of variance (RMANOVA) where
the within factor was time. Statistical differences of p < 0.05
were considered to be significant. All statistics were per-
formed using the SigmaStat statistical analysis package (Jan-
del Scientific, Chicago, IL, U.S.A.).

RESULTS

Effect of ischemia and reperfusion 
on proteasome activities

Proteasome activities were determined by measuring hy-
drolysis of the proteasome-specific peptide, suc-LLVY-MCA,
to a fluorescent end product. Results of this series of experi-
ments are expressed as percentage of control, where control
20S-proteasome activity was 953 ± 81 and control 26S-
proteasome activity was 573 ± 94 fluorescence units/mg of
protein/h. 20S-proteasome activity was not affected by 15
min of global ischemia and/or reperfusion (Fig. 1A). After 30
min of global ischemia alone, 20S-proteasome activity was
decreased by 40% (not significant), and significantly (p <
0.05) decreased by 70% after 30 min of global ischemia and
60 min of reperfusion. 26S-proteasome activity was mea-
sured only after 30 min of global ischemia; it was depressed
by 45% (not significant) by the end of ischemia, and signifi-
cantly (p < 0.05) decreased by 54% by the end of 60 min of
reperfusion (Fig. 1B).
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Effect of ischemia and reperfusion 
on myocardial ubiquitinated proteins

Ubiquitinated proteins were assessed using western blot
techniques and ubiquitin-specific antibodies. As illustrated
by Fig. 2, 30 min of ischemia and 60 min of reperfusion result
in accumulation of ubiquitinated proteins within myocardial
tissue. This was particularly apparent in bands of molecular
masses of 34, 50, and 55 kDa (see arrows, Fig. 2), thus con-
firming decreased activity of the 26S proteasome. The identi-
ties of these proteins were not studied as part of these experi-
ments, but were in a related experiment. Potential identities
are offered in the Discussion.

Effect of ischemia and reperfusion 
on myocardial protein carbonyls

The overall effect of varying times of ischemia on myocar-
dial protein carbonyls was assessed. As illustrated by Fig. 3,
15 min of global ischemia produced marginal increases in
protein carbonyls after ischemia and/or reperfusion. How-
ever, after 30 min of ischemia and 60 min of reperfusion, a
large increase in protein carbonyls was detected over a wide
range of molecular masses, an observation generally consis-
tent with what we have published previously (33, 44). We
have previously characterized the broad band at ~45 kDa as
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containing a mixture of �- and �-actin isoforms (44). Al-
though it is tempting to suggest that these results conclusively
demonstrate that myocardial proteins are increased following
ischemia and reperfusion, in light of decreases in 20S-prote-
asome activity, this result needs to be interpreted cautiously.

FIG. 1. Proteasome activity is decreased following isch-
emia and reperfusion. Isolated rat hearts were equilibrated for
20 min (control) and then subjected to either 15 min of global
ischemia (I-15) followed by 60 min of reperfusion (I-15 + R-
60), or 30 min of global ischemia (I-30) followed by 60 min of
reperfusion (I-30 + R-60). At the indicated time points, hearts
were analyzed for 20S-proteasome (A) or 26S-proteasome (B)
activities. The values represent the means ± SEM of five to 10
individual hearts in each group. *p < 0.05 (ANOVA; Tukey)
when compared with the control group.

FIG. 2. Accumulation of ubiquitinated proteins in isch-
emic myocardium. Isolated hearts were equilibrated for 20
min, then subjected to 30 min of normothermic global isch-
emia followed by 60 min of reperfusion. After equilibration
(P), ischemia (I), and reperfusion (R), hearts were processed
for immunoblot determination of ubiquitin-conjugated pro-
teins. Arrows indicate bands with accumulations of ubiquiti-
nated protein(s) at 34, 50, and 55 kDa. The membrane depicted
is representative of four separate experiments.

FIG. 3. Oxidation of myocardial proteins during and fol-
lowing ischemia. Isolated hearts were equilibrated for 20 min
preischemically, and then subjected to 15 or 30 min of global
ischemia, followed by 60 min of reperfusion. After equilibration
(P), ischemia (I), and reperfusion (R), hearts were processed for
immunoblot determination of protein carbonyl. The membrane
depicted is representative of five separate experiments.
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Effect of proteasome inhibition on postischemic
recovery of function and ubiquitinated proteins

The effect of additional inhibition of the proteasome on
recovery of postischemic function was assessed by treating
isolated hearts with the proteasome inhibitor, MG132, which
was included in the buffer during the preischemic period
only. Preischemic treatment with up to 25 µmol/L MG132 re-
sulted in a concentration-dependent decrease in recovery of
hemodynamic function in the postischemic period (Fig. 4).
Most of the 12 µmol/L time points and all of the 25 µmol/L
time points were significantly (p < 0.05, RMANOVA) less
than their respective control values. To confirm that MG132
was providing additional inhibition of the proteasome over
and above ischemia alone, ubiquitin-conjugated proteins
were assessed. Changes in function correlated with a dose-
dependent increase in accumulation of ubiquitin-conjugated
proteins measured at the end of reperfusion (Fig. 5). Most in-
triguing was the observation of dose-dependent accumulation
of ubiquitin-conjugated proteins in bands at 34, 50, and 55

FIG. 4. Proteasome inhibition decreases postischemic re-
covery of function. Isolated hearts were perfused with up to
25 µmol/L MG132 for 20 min prior to 30 min of normothermic
global ischemia. After ischemia, hearts were perfused with
buffer alone and allowed to recover for 60 min. Function was
determined as the heart rate � pressure product. The values
represent the means ± SEM of a minimum of six hearts per
group.

FIG. 5. Myocardial ischemia and proteasome inhibition
lead to enhanced accumulation of ubiquitinated proteins.
Isolated hearts were perfused with up to 25 µmol/L MG132 for
20 min prior to 30 min of normothermic global ischemia. After
ischemia, hearts were perfused with buffer alone and allowed
to recover for 60 min. At the end of reperfusion, hearts were
processed for immunoblot determination of ubiquitin-conju-
gated proteins. For this series of experiments, development of
color was done on the membrane using TNB as a substrate. Ar-
rows indicate bands with accumulations of ubiquitinated pro-
tein(s) at 34, 50, and 55 kDa. The arrow marked ns indicates a
band that represents nonspecific binding of the secondary anti-
body. The membrane depicted is representative of three sepa-
rate experiments.

FIG. 6. Nic and ischemic preconditioning improve post-
ischemic 20S- and 26S-proteasome activity. Isolated rat
hearts were equilibrated for 38 min preischemically, followed
by 25 min of global ischemia (index ischemia), and then 60
min of reperfusion (control). Hearts were preconditioned with
two episodes of 3 min of global ischemia interrupted by 2 min
of reflow and followed by 10 min of KH buffer perfusion prior
to ischemia (IP); or preconditioned pharmacologically with 50
µmol/L Nic infused over 10 min followed by 10 min of
washout prior to ischemia (Nic). Values represent the means ±
SEM of four hearts per group. *p < 0.05 (ANOVA; Tukey)
compared with control; #p < 0.05 (ANOVA; Tukey) compared
with corresponding control.
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kDa that match bands observed after 30 min of ischemia
(Fig. 2, see arrows). Interpretation of these results requires
some caution as we have shown that pharmacologic inhibition
of the proteasome results in loss of contractile function and
cardiomyocyte apoptosis in a perfused heart preparation (34).
The doses used in the current study generally do not have sig-
nificant effects on function and apoptosis in the nonischemic
heart within the 20-min preischemic “loading” interval. 

Preliminary evidence that preconditioning
preserves activity of the proteasomes

To assess the effects of preconditioning, isolated hearts
were subjected to intermittent ischemia (IP) or treated with
the mitochondrial KATP channel opener, Nic (42). Figure 6 il-
lustrates the effect of IP and Nic on 20S-proteasome (top) and
26S-proteasome (bottom) activities. 20S-proteasome activity
was significantly (p < 0.05) decreased by 39% following the
index ischemia and 75% by the end of reperfusion. IP and Nic
had no effect on 20S-proteasome activity following the index
ischemia, but both treatments significantly (p < 0.05) in-
creased activity after reperfusion. 26S-proteasome activity
was decreased following the index ischemia, but not signifi-
cantly, and IP and Nic had no effect on this. However, after
reperfusion, 26S-proteasome activity was drastically (signifi-
cance, p < 0.05) decreased to the point that it was almost not
detectable. It is not clear why the index ischemia had such an
extreme effect in these samples, but nonetheless, at least Nic
significantly (p < 0.05) increased 26S-proteasome activity by
the end of reperfusion.

DISCUSSION

The current study examines the hypothesis that postisch-
emic levels of oxidized and/or ubiquitinated proteins may be
predictive of functional return as they may be indicative of
activity of the 20S and/or 26S proteasomes. A series of corre-
lations between postischemic activity of the proteasomes,
levels of oxidized and/or ubiquitinated proteins, and recovery
of hemodynamic function were developed. The established
relationship between ischemia duration and postischemic for-
mation of oxidative species (31), and evidence that the pro-
teasomes are vulnerable to oxidative damage and inactivation
(5, 40), provide the rationale for the initial correlative study
examining the effect of varying durations of ischemia on ac-
tivities of the proteasome. We observed that 15 min of global
ischemia had no effect on 20S-proteasome activity, but that
30 min resulted in significant loss, a result in general agree-
ment with that published by Bulteau et al. (5). However, we
also demonstrate decreased activity of the 26S proteasome
following 30 min of ischemia and 60 min of reperfusion. The
observed proteasomal inhibition correlates with past determi-
nations of degree of postischemic recovery of function, as 15
min of global ischemia generally results in function not sig-
nificantly different from that of control hearts, but after 30
min of ischemia, function is significantly depressed by 50%
or more (33, 35). The relationship between recovery of func-
tion and proteasome activity is further strengthened by results
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of the inhibitor and preconditioning studies. Inhibition of the
proteasome with MG132 resulted in a dose-dependent de-
crease in postischemic recovery. Preconditioning of the myo-
cardium with ischemia or Nic improves postischemic function
(23), and partially preserved activity of the 20S proteasome
and, to a lesser degree, the 26S proteasome.

Inhibition of the 20S proteasome correlated with increases
in protein carbonylation, as little accumulation was observed
after 15 min of global ischemia, but large increases were de-
tected after 30 min of global ischemia and 60 min of reperfu-
sion. Numerous studies (5, 23, 33, 35, 44) have demonstrated
increases in protein oxidation following myocardial ischemia
and have generally suggested this result as indicative of in-
creased oxidation of proteins. At any point in time, the level
of protein oxidation products is dependent on rates of forma-
tion and degradation. In the current study, we observed in-
creased protein carbonyls following 30 min of ischemia and
60 min of reperfusion, corresponding to a time when activity
of the 20S proteasome was significantly decreased. After 15
min of ischemia and reperfusion, little protein oxidation was
detected at a time when 20S-proteasome activity was not de-
creased. In light of a recent study (46) that concluded that the
20S proteasome can degrade oxidatively modified proteins
without the need for ubiquitin or ATP, the interpretation of
these past studies may require further analysis, particularly in
light of the effects of preconditioning on 20S-proteasome ac-
tivity. We have previously shown that preconditioning de-
creases postischemic levels of carbonyl products of cytosolic
(44) and mitochondrial proteins (23). We theorized that one
mechanism was decreased production of oxidative species,
which decreases downstream protein oxidation, an effect that
could explain preservation of proteasome activity in the pre-
conditioned heart. It is probable that our previous observa-
tions of decreased protein oxidation (23, 44) result from de-
creased formation and improved removal of oxidized proteins
in the preconditioned heart. We remain convinced that in-
creased production of oxidative species during ischemia leads
to oxidation of myocardial proteins, but it can no longer be
assumed that increases are due merely to increased formation
without assessment of degradation. 

Postischemic inhibition of the 26S proteasome also led to
accumulation of modified proteins, in this case, ubiquitinated
proteins. We have reported an association between inhibition
of the proteasome, loss of contractile function, and cardiomy-
ocyte apoptosis in nonischemic hearts (34). Ubiquitin-depen-
dent protein degradation by the 26S proteasome regulates nu-
merous redox-sensitive signaling pathways, including the
c-Jun N-terminal kinase (48), nuclear factor-�B (NF�B) (7),
and JAK-STAT (53) pathways, and plays an essential role in
maintaining the balance between numerous pro- and anti-
apoptotic proteins, such as Bax (26), p53 (19), p27kip1 (30),
and hypoxia-inducible factor-1� (20). When the 26S prote-
asome is inhibited, these proapoptotic proteins tend to accu-
mulate as a result of decreased degradation, a phenomenon
known as dysregulation. Numerous studies (for reviews, see
11, 29) in a variety of cell lines have shown that pharmaco-
logic inhibition of the proteasome results in apoptosis coinci-
dent with dysregulation of several pro-death proteins. The
presence of three bands at 34, 50, and 55 kDa containing in-
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creased levels of ubiquitinated proteins suggests that isch-
emia might result in a similar phenomenon. These bands were
not identified as part of this study, but in a related study (36)
we partially immunoprecipitated the 34-kDa band with a
p27kip1-specific antibody and the 50- and 55-kDa bands with
a Bax-specific antibody, suggesting accumulation of ubiquiti-
nated homologues of these proteins. Unless the 26S prote-
asome is inhibited, it is not the rate-limiting step in ubiquitin-
mediated proteolysis (39); rather, ubiquitination of proteins is
most likely at the ubiquitin-ligase step (43, 51). Thus, in-
creases in ubiquitinated proteins would be more indicative of
decreased activity of the 26S proteasome.

The results of the proteasome inhibitor studies further sup-
port the hypothesis that myocardial ischemia can result in
dysregulation. If proteasome activity has any role in the de-
termination of postischemic recovery, then additional inhibi-
tion prior to ischemia should worsen postischemic recovery
coincident with increases in ubiquitinated proteins, which
was the observed result. The observation of dose-related in-
creases in ubiquitinated proteins in the same 34-, 50-, and 55-
kDa bands observed in ischemic hearts alone suggests that
these proteins are dysregulated, and suggests a putative role
for the proteasome in recovery of postischemic myocardial
function.

The inhibitor studies would appear to be at odds with pre-
vious studies of a proteasome inhibitor in ischemic myocar-
dium. Two studies (6, 38) have indicated that treatment with
the proteasome inhibitor, PS-519 (Millennium Pharmaceuti-
cals, Cambridge, MA, U.S.A.), has protective effects in the
ischemic myocardium. Both of these studies (6, 38) used the
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inhibitor to decrease leukocyte adhesion to endothelial cells,
thus limiting the inflammatory response associated with myo-
cardial ischemia. In one of these studies (6), an isolated per-
fused heart preparation was perfused with leukocyte-supple-
mented buffer, and in the absence of the leukocytes, no effect
of the inhibitor was observed. The ability of proteasome in-
hibitors to decrease the inflammatory response has been well
documented (9) and, besides effects on leukocyte adhesion,
has been attributed to inhibition of NF�B nuclear transloca-
tion resulting from dysregulation of I�B (7). Whether a pro-
teasome inhibitor has a beneficial (antiinflammatory) or neg-
ative (proapoptotic) effect is notoriously dose-related (27),
and will be somewhat dependent on degrees of proteasome
activity in the different tissues (e.g., leukocyte versus heart).
It may well be that after brief ischemia, where little or no pro-
teasome inhibition is present, decreasing leukocyte-mediated
inflammation with a peripherally acting inhibitor may be ben-
eficial. However, in the presence of significant proteasome
inhibition, an inhibitor may be counterproductive and tilt the
cell toward death, similar to what was observed in the current
study. Although both of these previous studies (6, 38) deter-
mined peripheral leukocyte 20S-proteasome activity, neither
measured myocardial 20S- or 26S-proteasome activity or lev-
els of ubiquitin-conjugated proteins. Thus, it is not clear if the
beneficial effect had any relation to myocardial proteasome.

In summary, it seems reasonable to conclude that a correla-
tion exists between eventual recovery of postischemic func-
tion and levels of oxidized and/or ubiquitinated proteins, to
the extent that they may actually be predictive. Although nu-
merous factors, including rates of formation, may affect lev-

LONG DURATION ISCHEMIANONISCHEMIC OR SHORT DURATION ISCHEMIA

De Novo Protein Synthesis

Pro-Survival Signals ≥ Pro-Death Signals

26S-Proteasome

Ubiquitinated
Protein

Inhibitor of
Pro-Survival

Protein

Pro-Death
Protein

Protein

Oxidized
Proteins

20S-Proteasome

Peptide Fragments Amino Acids

Peptidases

Protein

Peptide Fragments

Peptidases

Amino Acids

Oxidized
Proteins

Pro-Death
Protein

Inhibitor of
Pro-Survival

Protein

Ubiquitinated
Protein

26S-Proteasome

20S-Proteasome

Pro-Survival Signals ≤ Pro-Death Signals

Misfolded
proteins

Misfolded
proteins

-Ub(x)

-Ub(x)

-HC=O

-HC=O

H 2
O 2

, •
OH

H 2
O 2

, •
OH

Ubiquitin

Ubi
qu

iti
n

Ubiquitin

Ubi
qu

iti
n

-S-S-

-S-S-

H2O2
•OH

X

X

Fig. 7. Scheme illustrating potential roles of 20S and 26S proteasomes in short- and long-duration ischemia. H2O2, hydro-
gen peroxide; •OH, hydroxyl radical.

13910C03.pgs  4/5/05  4:33 PM  Page 544



els of oxidized and ubiquitinated proteins, one major deter-
minant is hydrolysis by the 20S and 26S proteasomes, respec-
tively. Under conditions that foster excessive inhibition of the
proteasomes, removal of oxidized proteins by the 20S prote-
asome would be impaired, thus hindering recovery, and nu-
merous proteins, some of which may be proapoptotic, that are
regulated by the 26S proteasome would accumulate, thus
pushing the cell toward death (see scheme in Fig. 7). On the
other hand, certain treatments, such as preconditioning, may
preserve activity of the proteasome and help to convert what
would have been cell death signals to cell survival signals as
recently suggested by Das and Maulik (8). Although it is ob-
vious that this area requires additional study, the concept that
the proteasomes may play significant roles in both myocar-
dial cell death and recovery following an ischemic insult is an
important advance that may eventually identify a site amen-
able to therapeutic intervention.
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